10BR60V2 #### **LOW FREQUENCY TRANSDUCER** ## **KEY FEATURES** - 100 W_{RMS} program power - Sensitivity: 92 dB (1W / 1m) - 2" copper voice coil - Ferrite magnet - Extended controlled displacement: X_{max} ± 6,5 mm - 31 mm peak-to-peak excursion before damage - Designed for low frequency reproduction ## **TECHNICAL SPECIFICATIONS** | 250 | mm | 10 in | |----------|-------------------|--------------------------| | | | 8 Ω | | | | 7,5 Ω | | | 1 | 00 W _{RMS} | | | | 200 W | | 92 dB | 1W / | 1m @ Z _N | | | 30 - | 5.000 Hz | | 30 / 100 |) I 1 | ,1 / 3,5 ft ³ | | 50,8 | mm | 2 in | | | | 10,9 N/A | | | | 0,044 kg | | | | 16 mm | | | | 7 mm | | | | 31 mm | | | 92 dB
30 / 100 | 92 dB 1W / | ## THIELE-SMALL PARAMETERS³ | Resonant frequency, f _s | 29 Hz | |--|----------------------| | D.C. Voice coil resistance, R _e | 6,5 Ω | | Mechanical Quality Factor, Q _{ms} | 3,3 | | Electrical Quality Factor, Q _{es} | 0,44 | | Total Quality Factor, Qts | 0,39 | | Equivalent Air Volume to C _{ms} , V _{as} | 142 I | | Mechanical Compliance, C _{ms} | 693 μm / N | | Mechanical Resistance, R _{ms} | 2,4 kg/s | | Efficiency, η ₀ | 0,75 % | | Effective Surface Area, S _d | 0,038 m ² | | Maximum Displacement, X _{max} ⁴ | 6,5 mm | | Displacement Volume, V _d | 247 cm ³ | | Voice Coil Inductance, Le | 1,14 mH | | | | #### Notes ¹ The power capaticty is determined according to AES2-1984 (r2003) standard. ² Program power is defined as power capacity + 3 dB. ³ T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time). $^{^4}$ The X_{max} is calculated as (L_{vc} - H_{ag})/2 + (H_{ag}/3,5), where L_{vc} is the voice coil length and H_{ag} is the air gap height. # 10BR60V2 ## **LOW FREQUENCY TRANSDUCER** **Note:** Frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m ## **MOUNTING INFORMATION** | Overall diameter | 260,5 mm | 10,3 in | |-------------------------|----------|---------| | Bolt circle diameter | 243,5 mm | 9,6 in | | Baffle cutout diameter: | | | | - Front mount | 228 mm | 9,0 in | | Depth | 117 mm | 4,7 in | | Net weight | 2,9 kg | 6,3 lb | | Shipping weight | 3,3 kg | 7,2 lb | ### **DIMENSION DRAWING**